67 research outputs found

    Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions

    Full text link
    Generative convolutional deep neural networks, e.g. popular GAN architectures, are relying on convolution based up-sampling methods to produce non-scalar outputs like images or video sequences. In this paper, we show that common up-sampling methods, i.e. known as up-convolution or transposed convolution, are causing the inability of such models to reproduce spectral distributions of natural training data correctly. This effect is independent of the underlying architecture and we show that it can be used to easily detect generated data like deepfakes with up to 100% accuracy on public benchmarks. To overcome this drawback of current generative models, we propose to add a novel spectral regularization term to the training optimization objective. We show that this approach not only allows to train spectral consistent GANs that are avoiding high frequency errors. Also, we show that a correct approximation of the frequency spectrum has positive effects on the training stability and output quality of generative networks

    Unsupervised Multiple Person Tracking using AutoEncoder-Based Lifted Multicuts

    Full text link
    Multiple Object Tracking (MOT) is a long-standing task in computer vision. Current approaches based on the tracking by detection paradigm either require some sort of domain knowledge or supervision to associate data correctly into tracks. In this work, we present an unsupervised multiple object tracking approach based on visual features and minimum cost lifted multicuts. Our method is based on straight-forward spatio-temporal cues that can be extracted from neighboring frames in an image sequences without superivison. Clustering based on these cues enables us to learn the required appearance invariances for the tracking task at hand and train an autoencoder to generate suitable latent representation. Thus, the resulting latent representations can serve as robust appearance cues for tracking even over large temporal distances where no reliable spatio-temporal features could be extracted. We show that, despite being trained without using the provided annotations, our model provides competitive results on the challenging MOT Benchmark for pedestrian tracking

    Spectral Distribution Aware Image Generation

    Full text link
    Recent advances in deep generative models for photo-realistic images have led to high quality visual results. Such models learn to generate data from a given training distribution such that generated images can not be easily distinguished from real images by the human eye. Yet, recent work on the detection of such fake images pointed out that they are actually easily distinguishable by artifacts in their frequency spectra. In this paper, we propose to generate images according to the frequency distribution of the real data by employing a spectral discriminator. The proposed discriminator is lightweight, modular and works stably with different commonly used GAN losses. We show that the resulting models can better generate images with realistic frequency spectra, which are thus harder to detect by this cue.Comment: Accepted at AAAI 2021 (conference version). Code: https://github.com/steffen-jung/SpectralGA

    Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

    Full text link
    Recently, RobustBench (Croce et al. 2020) has become a widely recognized benchmark for the adversarial robustness of image classification networks. In its most commonly reported sub-task, RobustBench evaluates and ranks the adversarial robustness of trained neural networks on CIFAR10 under AutoAttack (Croce and Hein 2020b) with l-inf perturbations limited to eps = 8/255. With leading scores of the currently best performing models of around 60% of the baseline, it is fair to characterize this benchmark to be quite challenging. Despite its general acceptance in recent literature, we aim to foster discussion about the suitability of RobustBench as a key indicator for robustness which could be generalized to practical applications. Our line of argumentation against this is two-fold and supported by excessive experiments presented in this paper: We argue that I) the alternation of data by AutoAttack with l-inf, eps = 8/255 is unrealistically strong, resulting in close to perfect detection rates of adversarial samples even by simple detection algorithms and human observers. We also show that other attack methods are much harder to detect while achieving similar success rates. II) That results on low-resolution data sets like CIFAR10 do not generalize well to higher resolution images as gradient-based attacks appear to become even more detectable with increasing resolutions.Comment: AAAI-22 AdvML Workshop ShortPape

    FrequencyLowCut Pooling -- Plug & Play against Catastrophic Overfitting

    Full text link
    Over the last years, Convolutional Neural Networks (CNNs) have been the dominating neural architecture in a wide range of computer vision tasks. From an image and signal processing point of view, this success might be a bit surprising as the inherent spatial pyramid design of most CNNs is apparently violating basic signal processing laws, i.e. Sampling Theorem in their down-sampling operations. However, since poor sampling appeared not to affect model accuracy, this issue has been broadly neglected until model robustness started to receive more attention. Recent work [17] in the context of adversarial attacks and distribution shifts, showed after all, that there is a strong correlation between the vulnerability of CNNs and aliasing artifacts induced by poor down-sampling operations. This paper builds on these findings and introduces an aliasing free down-sampling operation which can easily be plugged into any CNN architecture: FrequencyLowCut pooling. Our experiments show, that in combination with simple and fast FGSM adversarial training, our hyper-parameter free operator significantly improves model robustness and avoids catastrophic overfitting

    SpectralDefense: Detecting Adversarial Attacks on CNNs in the Fourier Domain

    Full text link
    Despite the success of convolutional neural networks (CNNs) in many computer vision and image analysis tasks, they remain vulnerable against so-called adversarial attacks: Small, crafted perturbations in the input images can lead to false predictions. A possible defense is to detect adversarial examples. In this work, we show how analysis in the Fourier domain of input images and feature maps can be used to distinguish benign test samples from adversarial images. We propose two novel detection methods: Our first method employs the magnitude spectrum of the input images to detect an adversarial attack. This simple and robust classifier can successfully detect adversarial perturbations of three commonly used attack methods. The second method builds upon the first and additionally extracts the phase of Fourier coefficients of feature-maps at different layers of the network. With this extension, we are able to improve adversarial detection rates compared to state-of-the-art detectors on five different attack methods

    Learning Embeddings for Image Clustering: An Empirical Study of Triplet Loss Approaches

    Full text link
    In this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolutional neural network to learn discriminative features by optimizing two popular versions of the Triplet Loss in order to study their clustering properties under the assumption of noisy labels. Additionally, we propose a new, simple Triplet Loss formulation, which shows desirable properties with respect to formal clustering objectives and outperforms the existing methods. We evaluate all three Triplet loss formulations for K-means and correlation clustering on the CIFAR-10 image classification dataset

    Learning distributional token representations from visual features

    Get PDF
    In this study, we compare token representations constructed from visual features (i.e., pixels) with standard lookup-based embeddings. Our goal is to gain insight about the challenges of encoding a text representation from low-level features, e.g. from characters or pixels. We focus on Chinese, which—as a logographic language—has properties that make a representation via visual features challenging and interesting. To train and evaluate different models for the token representation, we chose the task of character-based neural machine translation (NMT) from Chinese to English. We found that a token representation computed only from visual features can achieve competitive results to lookup embeddings. However, we also show different strengths and weaknesses in the models’ performance in a part-of- speech tagging task and also a semantic similarity task. In summary, we show that it is possible to achieve a text representation only from pixels. We hope that this is a useful stepping stone for future studies that exclusively rely on visual input, or aim at exploiting visual features of written language
    • …
    corecore